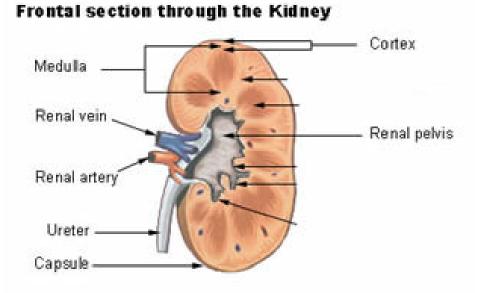

URINARY SYSTEM

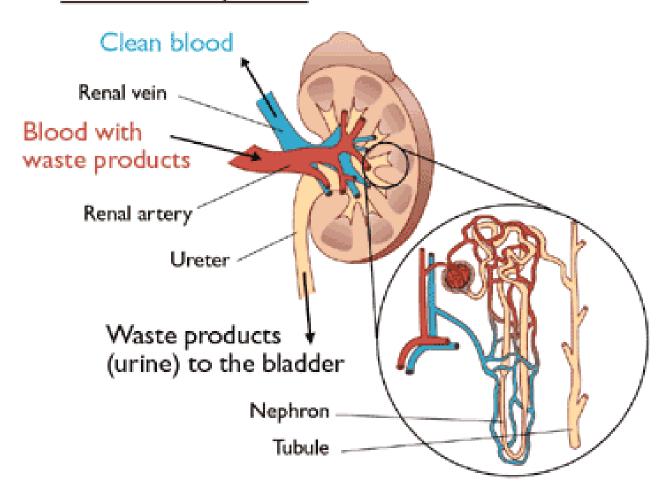

Structures of the Urinary System

- Kidneys: extract urea, excess H+, penicillin, histamines... from the blood
- Ureter: leads from the kidney to the bladder
- Bladder: urine storage
- Urethra: leads to the outside of the body

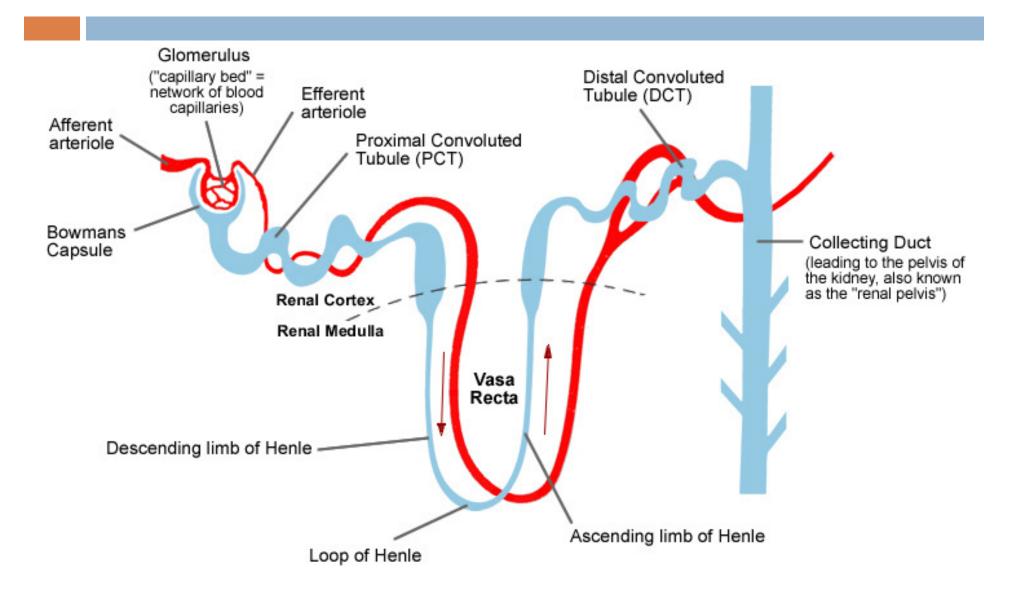
Kidney & Blood Supply

- Renal Artery: brings
 blood to the kidney to
 be filtered (cleaned)
- Renal Vein: takes
 clean, filtered blood
 back to the circulatory
 system

Kidney Structure


- The kidney is divided into 3 main sections
- Renal Cortex: the outermost layer
- Renal Medulla: the middle section
- Renal Pelvis: The inner section of the kidney

Medulla Renal vein Renal artery Ureter Capsule


Frontal section through the Kidney

The Nephron: (functional unit of the kidney)

How the kidney works

Nephron Structure

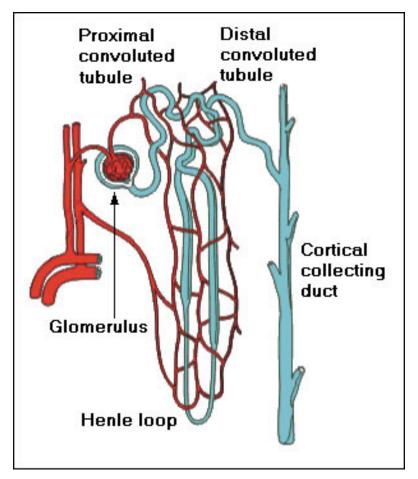
Parts of the nephron

- Afferent arteriole: takes blood to the glomerulus
- Glomerulus: the capillary `ball` where pressure filtration occurs
- Efferent arteriole: takes blood from the glomerulus to the peritubular capillary network
- Bowman's capsule: the end of the nephron that surrounds the glomerulus and receives substances that are filtered out of the blood

More Parts of the Nephron

- Proximal convoluted tubule: leads from Bowman's capsule to the loop of Henle
- Loop of Henle: runs from the proximal convoluted tubule down through the medulla and back up the distal convoluted tubule
- Distal convoluted tubule: between the loop of Henle and the collecting duct

Even More Parts of the Nephron

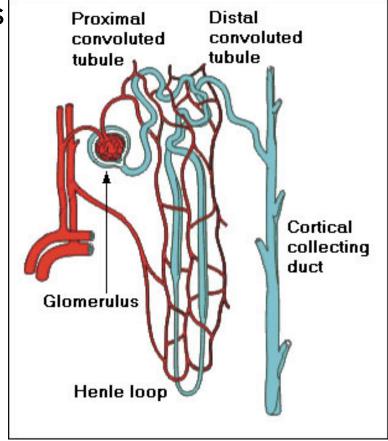

- Peritubular capillary network: winds around the nephron (convoluted tubules and loop of Henle) and eventually takes clean blood to the renal vein
- Collecting duct: located at the end of the nephron. Starts at the end of the distal convoluted tubule and ends in the renal pelvis

Steps of Urine Formation

- Pressure Filtration
- Selective Reabsorption
- Water Reabsorption
- \square Na⁺ Retention
- Tubular Secretion
- Water Reabsorption
- Excretion

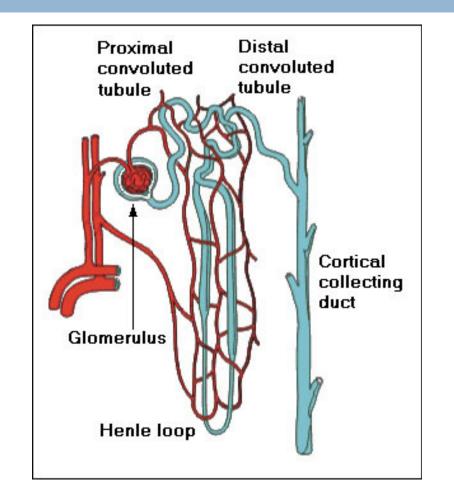
Pressure Filtration

- Blood pressure in glomerulus forces water and other small components of blood out of the glomerulus and into Bowman's capsule
- Substances removed from the blood are called filtrate & include water, nitrogenous wastes, salts & ions



Tubular Reabsorption

- Occurs in the proximal convoluted tubule
- Carrier proteins move needed materials (glucose, amino acids, nutrients...) back into the peritubular capillaries via active transport (ATP)
- □ Na⁺ is actively pumped out of the PCT
- Water and Cl⁻ move out by passive transport


Water Reabsorption

- The decending loop of Henle is permeable to water but not Na⁺
- It passes through the renal medulla which has a high solute concentration (hypertonic)
- Water moves out of the nephron resulting in the concentration of the filtrate

Na⁺ Reabsorption

- The ascending loop of Henle is permeable to Na+ and not water
- Na+ moves out by diffusion in the lower portion (medulla region) and by active transport in the upper region (cortex)

Tubular Secretion

 Occurs at the distal convoluted tubule
 Substance in excess in the blood (penicillin, histamines, vitamins...) are pumped out (active transport) of the peritubular capillaries and enter the filtrate

Water Reabsorption & Urine Formation

- The top of the collecting duct is isotonic to the cells of the renal cortex so no movement here
- As filtrate moves down the collecting duct through the renal medulla (hypertonic) water moves out of the collecting duct concentrating the filtrate even further
- Normally 99% of water from original filtrate is reabsorbed
- Urine moves from collecting duct to renal pelvis

Kidneys & Blood pH

The kidneys maintain blood pH at about
 7.4

When blood is too acidic hydrogen ions & ammonia are excreted while sodium & bicarbonate ions are reabsorbed

Renal Artery vs. Renal Vein

	Renal Artery	Renal Vein
Glucose content of blood	Same as renal vein	Same as renal artery (100% reabsorption)
Urea content of blood	High urea content	Low urea content (some is reabsorbed)

ADH: Antidiuretic Hormone

Produced in the hypothalamus Stored and released from the posterior pituitary (source gland) Release is triggered by low blood volume/high solute concentration of plasma – this is sensed by receptor cells in the hypothalamus

ADH: Antidiuretic Hormone

- Targets the collecting ducts and the distal convoluted tubule (increases permeability to water)
- Results in increased water reabsorption
- When blood volume/solute concentration returns to normal less ADH is released (negative feedback) and less water would be reabsorbed

Aldosterone

- Source gland is the adrenal cortex (outer portion of the adrenal glands which sit on top of the kidneys)
- Release is triggered by low blood sodium levels and/or low blood volume
- Results in increased Na⁺ reabsorption which leads to increased reabsorption of water

ADH & Aldosterone

ADH & aldosterone both increase water reabsorption but both are 'fixing' different 'problems' with homeostasis in the blood

ADH vs. Aldosterone

ADH	Aldosterone
 Response to 	 Response to low blood
dehydration/high solute	volume/low Na ⁺ levels
concentration of the	•Possible causes =
blood	diarrhea, injury, blood
• Possible cause =	loss
inadequate water	 Increases Na⁺
intake	reabsorption and water
 Increases water 	reabsorption
reabsorption	